4 resultados para CARDIOVASCULAR RISK

em Dalarna University College Electronic Archive


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Patients with chronic kidney disease are at higher risk of developing cardiovascular disease. The complex, interaction between the kidney and the cardiovascular system is incompletely understood, particularly at the early stages of the cardiovascular continuum. The overall aim of this thesis was to clarify novel aspects of the interplay between the kidney and the cardiovascular system at different stages of the cardiovascular continuum; from risk factors such as insulin resistance, inflammation and oxidative stress, via sub-clinical cardiovascular damage such as endothelial dysfunction and left ventricular dysfunction, to overt cardiovascular death. This thesis is based on two community-based cohorts of elderly, Uppsala Longitudinal Study of Adult Men (ULSAM) and Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS). The first study, show that higher insulin sensitivity, measured with euglycemic-hyperinsulinemic clamp technique was associated to improve estimated glomerular filtration rate (eGFR) in participants with normal fasting plasma glucose, normal glucose tolerance and normal eGFR. In longitudinal analyses, higher insulin sensitivity at baseline was associated with lower risk of impaired renal function during follow-up. In the second study, eGFR was inversely associated with different inflammatory markers (C-reactive protein, interleukin-6, serum amyloid A) and positively associated with a marker of oxidative stress (urinary F2-isoprostanes). In line with this, the urinary albumin/creatinine ratio was positively associated with these inflammatory markers, and negatively associated with oxidative stress. In study three, higher eGFR was associated with better endothelial function as assessed by the invasive forearm model. Further, in study four, higher eGFR was significantly associated with higher left ventricular systolic function (ejection fraction). The 5th study of the thesis shows that higher urinary albumin excretion rate (UAER) and lower eGFR was independently associated with an increased risk for cardiovascular mortality. Analyses of global model fit, discrimination, calibration, and reclassification suggest that UAER and eGFR add relevant prognostic information beyond established cardiovascular risk factors in participants without prevalent cardiovascular disease. Conclusion: this thesis show that the interaction between the kidney and the cardiovascular system plays an important role in the development of cardiovascular disease and that this interplay begins at an early asymptomatic stage of the disease process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Soluble tumor necrosis factor receptors 1 and 2 (sTNFR1 and sTNFR2) contribute to experimental diabetic kidney disease, a condition with substantially increased cardiovascular risk when present in patients. Therefore, we aimed to explore the levels of sTNFRs, and their association with prevalent kidney disease, incident cardiovascular disease, and risk of mortality independently of baseline kidney function and microalbuminuria in a cohort of patients with type 2 diabetes. In pre-defined secondary analyses we also investigated whether the sTNFRs predict adverse outcome in the absence of diabetic kidney disease. METHODS: The CARDIPP study, a cohort study of 607 diabetes patients [mean age 61 years, 44 % women, 45 cardiovascular events (fatal/non-fatal myocardial infarction or stroke) and 44 deaths during follow-up (mean 7.6 years)] was used. RESULTS: Higher sTNFR1 and sTNFR2 were associated with higher odds of prevalent kidney disease [odd ratio (OR) per standard deviation (SD) increase 1.60, 95 % confidence interval (CI) 1.32-1.93, p < 0.001 and OR 1.54, 95 % CI 1.21-1.97, p = 0.001, respectively]. In Cox regression models adjusting for age, sex, glomerular filtration rate and urinary albumin/creatinine ratio, higher sTNFR1 and sTNFR2 predicted incident cardiovascular events [hazard ratio (HR) per SD increase, 1.66, 95 % CI 1.29-2.174, p < 0.001 and HR 1.47, 95 % CI 1.13-1.91, p = 0.004, respectively]. Results were similar in separate models with adjustments for inflammatory markers, HbA1c, or established cardiovascular risk factors, or when participants with diabetic kidney disease at baseline were excluded (p < 0.01 for all). Both sTNFRs were associated with mortality. CONCLUSIONS/INTERPRETATIONS: Higher circulating sTNFR1 and sTNFR2 are associated with diabetic kidney disease, and predicts incident cardiovascular disease and mortality independently of microalbuminuria and kidney function, even in those without kidney disease. Our findings support the clinical utility of sTNFRs as prognostic markers in type 2 diabetes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and objectives The matricellular protein osteopontin is involved in the pathogenesis of both kidney and cardiovascular disease. However, whether circulating and urinary osteopontin levels are associated with the risk of these diseases is less studied. Design, setting, participants and measurements A community-based cohort of elderly (Uppsala Longitudinal Study of Adult Men [ULSAM; n=741; mean age: 77 years]) was used to study the associations between plasma and urinary osteopontin, incident chronic kidney disease, and the risk of cardiovascular death during a median of 8 years of follow-up. Results There was no significant cross-sectional correlation between plasma and urinary osteopontin (Spearman rho=0.07, p=0.13). Higher urinary, but not plasma osteopontin, was associated with incident chronic kidney disease in multivariable models adjusted for age, cardiovascular risk factors, baseline glomerular filtration rate (GFR), urinary albumin/creatinine ratio, and inflammatory markers interleukin 6 and high sensitivity C-reactive protein (Odds ratio for 1-standard deviation (SD) of urinary osteopontin, 1.42, 95% CI (1.00-2.02), p=0.048). Conversely, plasma osteopontin, but not urinary osteopontin, was independently associated with cardiovascular death (multivariable hazard ratio per SD increase, 1.35, 95% CI (1.14-1.58), p<0.001, and 1.00, 95% CI (0.79-1.26), p=0.99, respectively). The addition of plasma osteopontin to a model with established cardiovascular risk factors significantly increased the C-statistics for the prediction of cardiovascular death (p<0.002). Conclusions Higher urinary osteopontin specifically predicts incident chronic kidney disease while plasma osteopontin specifically predicts cardiovascular death. Our data put forward osteopontin as an important factor in the detrimental interplay between the kidney and the cardiovascular system. The clinical implications, and why plasma and urinary osteopontin mirror different pathologies, remains to be established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Analyses of circulating metabolites in large prospective epidemiological studies could lead to improved prediction and better biological understanding of coronary heart disease (CHD). We performed a mass spectrometry-based non-targeted metabolomics study for association with incident CHD events in 1,028 individuals (131 events; 10 y. median follow-up) with validation in 1,670 individuals (282 events; 3.9 y. median follow-up). Four metabolites were replicated and independent of main cardiovascular risk factors [lysophosphatidylcholine 18∶1 (hazard ratio [HR] per standard deviation [SD] increment = 0.77, P-value<0.001), lysophosphatidylcholine 18∶2 (HR = 0.81, P-value<0.001), monoglyceride 18∶2 (MG 18∶2; HR = 1.18, P-value = 0.011) and sphingomyelin 28∶1 (HR = 0.85, P-value = 0.015)]. Together they contributed to moderate improvements in discrimination and re-classification in addition to traditional risk factors (C-statistic: 0.76 vs. 0.75; NRI: 9.2%). MG 18∶2 was associated with CHD independently of triglycerides. Lysophosphatidylcholines were negatively associated with body mass index, C-reactive protein and with less evidence of subclinical cardiovascular disease in additional 970 participants; a reverse pattern was observed for MG 18∶2. MG 18∶2 showed an enrichment (P-value = 0.002) of significant associations with CHD-associated SNPs (P-value = 1.2×10-7 for association with rs964184 in the ZNF259/APOA5 region) and a weak, but positive causal effect (odds ratio = 1.05 per SD increment in MG 18∶2, P-value = 0.05) on CHD, as suggested by Mendelian randomization analysis. In conclusion, we identified four lipid-related metabolites with evidence for clinical utility, as well as a causal role in CHD development.